Optimal Evading Strategies and Task Allocation in Multi-Pursuer Single-Evader Problems

Venkata Ramana Makkapati and Panagiotis Tsiotras

Dynamics and Control Systems Laboratory Department of Aerospace Engineering Georgia Institute of Technology

12th July, 2018

- Motivation and problem statement
- Optimal evading strategies
- Active/Redundant pursuers
- Simulations

Motivation

- Airspace security
- Regulate the traffic and usage of UAVs

Figure 1: DroneHunter ^a

^ahttps://fortemtech.com/

A scenario

Assume:

- *n* agents (pursuers) guarding a territory
- *m* adversaries (evaders, typically *m* ≤ *n*)
- Pursuers want to capture the evaders
- Pursuers are faster than the evaders

12th July, 2018

5 / 27

Some questions!

Relevant Questions:

- What is the shortest time-to-capture, while evaders will try to postpone capture indefinitely?
- Which pursuer(s) should go after which evader(s)?
- A multi-pursuer multi-evader game!

Approach

- Divide and Conquer
- Solve *m* multi-pursuer single-evader games
- Pursuers follow simple navigation laws: Pure Pursuit (PP) or Constant Bearing (CB) staregies

12th July, 2018 6 / 27

Active/Redundant Pursuers

Problem Set Up

Ramana

Figure 2: Schematics of the proposed pursuit-evasion problems.

ISDG 2018

Identical pursuers, pursuers faster than evader.

				JU
12 th	July,	2018	7	/ 27

Active/Redundant Pursuers

Simulations

Regions of Non-Degeneracy¹

(a) CB

(b) PP

Figure 3: Regions of non-degeneracy

 1 Makkapati et al., Pursuit-Evasion Problems Involving Two Pursuers and One Evader, AIAA GNC Conference, Kissimmee, FL, 2018

Ramana

ISDG 2018

Active/Redundant Pursuers

Simulations

Tech

Georgia

Two Pursuers - CB (Previous work)

Figure 4: Trajectories of the players for optimal control inputs in Scenario 1: black - evader, blue - P_1 , red - P_2 .

Active/Redundant Pursuers

Simulations

Two Pursuers - PP (Previous work)

Figure 5: Performance of the optimal and suboptimal strategies for a non-degenerate case in Scenario 2: black - evader, blue - P_1 , red - P_2 .

Active/Redundant Pursuers

Simulations

Optimal Evading Strategies

12th July 2018

11 / 27

In both CB and PP cases:

Proposition

The time-optimal evading strategy is <u>dependent only on</u> the initial positions of those **pursuers that (simultaneously) capture the evader**.

Let's call them the "influential" pursuers!

Some Issues

In both cases

- No analytical expression for the optimal strategy of the evader
- Hard to identify the influential pursuers no theoretical backing!

Motivation

What If?

■ The pursuers don't know the evader's strategy

Capturing Pursuer Set

Definition

Given the initial positions of the players (at t = 0) in an MPSE problem and assuming that the pursuers follow either a CB or a PP strategy, for a given evading strategy, the capturing pursuer set \mathbb{P} is the set of pursuers that are in the capture zone of the evader at the time of capture (t_c) .

Active/Redundant Pursuers

Simulations

Active/Redundant Pursuers

12th July, 2018

15 / 27

At time $0 \le t < t_c$

Definition

If there exists an evading strategy for which pursuer P_i is in \mathbb{P} , then P_i is an **active pursuer**.

Definition

If there exists no evading strategy for which pursuer P_i is in \mathbb{P} , then P_i is a **redundant pursuer**

Active/Redundant Pursuers

Simulations

Apollonius Curves

Figure 6: The locus of capture points for a non-maneuvering evader in the cases CB and PP. Simulation parameters: u = 1, v = 0.6.

Ra		

12th July, 2018 16 / 27

Active/Redundant Pursuers

Apollonius Boundary

0

-5

-5

Figure 7: Apollonius boundaries for CB and PP cases (Simulation parameters: u = 1, v = 0.6)

A Formal Definition

12th July, 2018

18 / 27

Definition

The **Apollonius boundary** is the set of points $\mathcal{B} = \{X \in \bigcup_{i=1}^{n} \mathcal{A}_i \mid \mathcal{M}(E, X) \cap \left(\bigcup_{i=1}^{n} \mathcal{A}_i\right) = \{X\}\}, \text{ where}$ $\mathcal{M}(E, X) \text{ denotes the set of points on the line segment with}$ endpoints *E* (position of the evader) and *X*.

Active/Redundant Pursuers

A Conjecture for the CB case

12th July, 2018

19 / 27

Conjecture

Pursuer P_i is active if $\mathcal{B} \cap \mathcal{A}_i \neq \emptyset$, and is redundant otherwise.

Ramana

ISDG 2018

Pursuer P_i is the only active pursuer if and only if

$$\mathcal{A}_{i} \cap \left(\bigcup_{j=1, j \neq i}^{n} \mathcal{A}_{j}\right) = \emptyset,$$
(1)
$$\mathcal{M}(E, T_{i}) \cap \left(\bigcup_{j=1, j \neq i}^{n} \mathcal{A}_{j}\right) = \emptyset,$$
(2)

 T_i is the closest point to the evader on the Apollonius circle A_i

8 12th July, 2018 20 / 27

Assumption: A_i intersects one or more of the other Apollonius circles.

 P_i is an active pursuer if and only if there exists at least one $X \in \mathcal{I}_i$ such that:

$$\mathcal{M}(E,X) \cap \left(\bigcup_{j=1}^{n} \mathcal{A}_{j}\right) = \{X\},$$
 (3)

 \mathcal{I}_i is the set of intersections points between \mathcal{A}_i and the rest of the Apollonius circles.

		DCSL
Ramana	ISDG 2018	12 th July, 2018 21 / 27

Algorithm to Identify Pursuer Status

Algorithm 1 Obtain the status of pursuer P_i in the case of CB
Require: Positions of all the players $(p_1, \dots, p_n, p_E, i)$
Ensure: Status of pursuer P_i
1: procedure OBTAIN_STATUS $(p_1, \dots, p_n, p_E, i)$
2: flag1 = 0 (To check if A_i intersects any other Apollonius circle)
2: $\operatorname{hag1} = 0$ (10 check if \mathcal{A}_i intersects any other Apolionias circle) 3: $\operatorname{status} = \operatorname{redundant}$
4: for $j = 1$ to n and $j \neq i$ do
5: Obtain \mathcal{I}_{ij} (set of intersection points (X_ℓ) for \mathcal{A}_i and \mathcal{A}_j)
6: if $\mathcal{I}_{ij} \neq \emptyset$ then
7: $flag1 = 1$
8: for $\ell = 1$ to card(\mathcal{I}_{ij}) do
9: flag2 = 0. (To check if $\mathcal{M}(p_E, X_\ell)$ intersects any other Apollonius circle)
10: for $k = 1$ to n and $k \neq i, j$ do
11: if $\mathcal{M}(p_E, X_\ell)$ intersects \mathcal{A}_k then
12: $flag2 = 1$
13: if $flag2 = 0$ then
14: status = active
15: break from outermost loop.
16: if $flag1 = 0$ then
17: status = active
18: for $j = 1$ to n and $j \neq i$ do
19: if $\mathcal{M}(p_E, T_i)$ intersects \mathcal{A}_i then
20: status = redundant
21: break
22: return status

DCSL

Active/Redundant Pursuers

Simulations •0000

Simulations

(a) Initial Apollonius circles

(b) Trajectories

Figure 8: CB case

 Ramana
 ISDG 2018
 12th July, 2018
 23 / 27

Active/Redundant Pursuers

Simulations

Simulations

Ramana

ISDG 2018

DCSL

An extension to multi-evaders case

- I Find the set of all active pursuers for each evader
- **2** Check if each active pursuer is assigned to a single evader
- **3** Break the tie by assigning the closest evader
- 4 Obtain the set of unassigned pursuers
- **5** Add the unassigned pursuers to the current assignment, and recheck active pursuers
- 6 Repeat steps (3)-(5) until (2) is satisfied

Active/Redundant Pursuers

Simulations

Simulations

(a) t = 0

(b) t = 1.3

(c) t = 2.5

Figure 10: CB case

Ra		

DCSL

Future Work

- Estimate when the assignment can change to avoid unnecessary calculations
- Account for turn-radius constraints on the players

